Optimizing 1.55-µm VCSELs yields thinner DBRs

Nov. 1, 2002

Vertical-cavity surface-emitting lasers (VCSELs) emitting at telecom wavelengths offer low threshold currents, single-mode operation, high coupling efficiencies into fiber, and high-speed modulation. Maria Linnick and Aris Christou at University of Maryland (College Park) reported results from an optimized 1.55-µm VCSEL design at the recent IEEE LEOS Summer Topical Meetings (Mont Tremblant, Quebec).1

The researchers sought materials with crystal lattices that match the InP substrate while offering a large index difference from InP. They chose to make their DBRs from alternating layers of Al0.05Ga0.43In0.53As and InP, which yields a refractive index difference of 0.63. The top (p-doped) DBR consists of 16 layers with an expected reflectivity of 97%, and the bottom (n-doped) DBR consists of 22 layers with an expected reflectivity of 99%.

Their design focuses on providing excellent performance while minimizing the number of layers that must be grown, which they expect to improve device reliability. They used MBE to grow a VCSEL with an unstrained multiple-quantum-well active layer, consisting of eight Ga0.43In0.57As0.92P0.08 wells, each 6 nm thick, separated by seven Ga0.23In0.77As0.5P0.5 barriers, each 9 nm thick. The quantum wells were located between cladding layers to place them at the peak of the electric field standing wave in order to achieve matched gain.

A 70-nm-thick layer of AlInAsP right next the cladding layers acts as the lowest layer of the p-doped DBR, and was selectively oxidized to form a 7-µm-diameter aperture. The oxide layer efficiently confines the charge carriers into the laser active region while the reduced refractive index of the oxide transversely confines the laser emission.

Average threshold current was 3 mA, threshold voltage was typically less than 2 V, and the power output exceeded 1 mW. The output spectrum showed a single mode at 1.54 µm. Contact Aris Christou at [email protected].

  1. M. Linnik and A. Christou, LEOS Summer Topical Meetings 2002, Invited paper WG2 (July 5–17, 2002).

Sponsored Recommendations

Transforming the metro network and the evolution of the "Digital Service Provider"

March 4, 2025
Join experts at EXFO and Ekinops in this webinar that will review the evolving metro-centric requirements and the technologies emerging to meet them.

Innovations Optical Transceivers

March 10, 2025
The continual movement around artificial intelligence (AI) cluster environments is driving new sales of optical transceiver sales and the adoption of linear pluggable optics (...

Unveiling the Synergy Between AI and Optical Networking

March 12, 2025
Join us for an engaging discussion with industry experts on the intersection of AI and optics. Moderated by Sean Buckley, editor-in-chief of Lightwave+BTR, this panel will explore...

ON TOPIC: Filling Coverage Gaps, Enhancing Public Safety

Jan. 30, 2025
With the ongoing drive to support AI and the need for high-speed data center interconnection, the call for higher-speed 800G optical technology is emerging. Initially focused ...