Lightwave Logic demos prototype silicon organic hybrid modulator

Oct. 15, 2013
Lightwave Logic, Inc. (OTCQB: LWLG) says it has successfully fabricated and operated a slot waveguide optical modulator based on its proprietary silicon organic hybrid (SOH) technology. This first-generation device has achieved greater electro-optical activity and dramatically lower drive voltage than industry-standard modulators based on inorganic materials, the company claims.

Lightwave Logic, Inc. (OTCQB: LWLG) says it has successfully fabricated and operated a slot waveguide optical modulator based on its proprietary silicon organic hybrid (SOH) technology. This first-generation device has achieved greater electro-optical activity and dramatically lower drive voltage than industry-standard modulators based on inorganic materials, the company claims.

SOH technology combines the efficiency of silicon photonics with the power and versatility of organic nonlinear electro-optical materials, Lightwave Logic asserts. In an SOH modulator, the optical signal is guided by a silicon waveguide structure with an organic polymer cladding layer above the waveguide to provide the electro-optic effect.

The device, developed and fabricated by Lightwave Logic's chemists and material system with a third-party research group the company did not identify, uses an existing modulator structure with one of Lightwave's proprietary electro-optic polymer material systems as the enabling material layer.

Lou Bintz, Lightwave Logic's vice president of product development, said, "The very short device length opens the door to extremely high modulation speeds and integrated optical circuit architectures. We are vigorously pursuing our chemistry development and fully expect accelerating improvement in our proprietary electro-optic polymer thin-film products."

Tom Zelibor, chairman and chief executive officer of Lightwave Logic added, "These initial results constitute a truly significant event for our company as it proves that our materials can work in photonic devices. Importantly, this prototype represents a solid starting point from which we continue to improve performance characteristics.

For more information on optical components and suppliers, visit the Lightwave Buyers Guide.

Sponsored Recommendations

Transforming the metro network and the evolution of the "Digital Service Provider"

March 4, 2025
Join experts at EXFO and Ekinops in this webinar that will review the evolving metro-centric requirements and the technologies emerging to meet them.

Unveiling the Synergy Between AI and Optical Networking

March 12, 2025
Join us for an engaging discussion with industry experts on the intersection of AI and optics. Moderated by Sean Buckley, editor-in-chief of Lightwave+BTR, this panel will explore...

AI and Network Convergence: Transforming Global Connectivity

March 7, 2025
In today’s hyperconnected world, rolling out and managing profitable, high-performance networks for access and transport will require innovative architectural approaches. The ...

On Topic: Fiber - The Rural Equation

Oct. 29, 2024
RURAL BROADBAND:AN OPPORTUNITY AND A CHALLENGE The rural broadband market has always been a challenge for service providers. However, the recent COVID-19 pandemic highlighted ...